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Abstract

Using the fact that the class of representable cylindric algebras of infinite
dimension fails to have the amalgamation property, we solve an open problem in
the monograph “Cylindric Algebras, Part I” by Henkin, Monk and Tarski. Our
result applies to other algebras of logic, namely Pinter’s substitution algebras and
Halmo’s quasi-polyadic algebras.

1. Introduction

Problem 2.13 on p. 464 of [6] asks whether every representable
cylindric algebra of infinite dimension satisfies a certain property
formulated in terms of reducts of the algebra in question which is (iii) in
Theorem 2.6.50 in [6]. We give a negative answer to this question by
showing that the class of algebras satisfying (ii1)) in Theorem 2.6.50
necessarily have the amalgamation property, while it is known that the
class of representable cylindric algebras does not have the amalgamation
property. However, we will not only address cylindric algebras, but our
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investigations will cover also other algebras for which this question is
meaningful. The concrete versions of algebras considered consist of sets
of sequences, and the operations are set-theoretic operations on such sets.
Let a be an ordinal. Let U be a set. Then, we define for i, j < o and

X c *U:
;X ={se®U:3teX, t(j)=s(j) for all j = i},
sin ={s e *U : so[i]j] € X},
53, j]X = {s € *U : soli, jl € X},

dij Z{SEQUZSL' ZS]'}
[| ] is the replacement on a that takes i to j and leaves every other

thing fixed, while [i, j] is the transposition interchanging i and j. The

extra non-boolean operations we deal with are as specified above. For set
X, let B(X) = (p(X), U, N, ~, 0, X) be the full boolean set algebra with

universe p(X). Let S be the operation of forming subalgebras, and P be

that of forming products.

Then

RSC, = SP{(B("U), ¢;, Sij )i,j<(x : U is a set}.

RQA, = SP{(B("V), ¢;, s/, S[i, j])i, jea : U s a set}.

l
RCA, = SP{(3("U), ¢;, dij)i,j<a : U is a set}.

RQEA, = SP{(B(“U), ¢;, djj, s[i,j]);, jea : U is a set}.

SC stands for the class of Pinter’s substitution algebras. QA (QEA) for

quasi-polyadic (equality) algebras and CA stands for the class of
cylindric algebras. In our treatment of cylindric algebras, we follow the
notation and terminology of [6], while for QA ’s and QEA’s we follow [13]

and for SC’s we follow [10], see also [11]. These are abstract classes
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defined by a finite schema of equations in the same similarity type of the

representable algebras defined above.

Definition 1. An algebra in SC,, is of the form

A= (A4, + -, 01,c¢, sij)

i,jea’
where (A, +, -, —, 0, 1) is a boolean algebra c;, Si] are unary operations

on 2A(i, j < a) satisfying the following equations for all i, j, k, [ € a

L ¢j0 =0, x < ¢x, ¢;j(x - ¢;y) = ¢;x - ¢;y, and ¢;cjx = cjc;x,
i

2. §;x = X,

3. s; are boolean endomorphisms,

4. s;cix = ¢;x,

5. ¢js'x = s;x, whenever i # j,

J

6. s;ckx = cks;x, whenever & ¢ {i, j},

shx.

ol =
1. ¢six = ¢ i

All algebras considered have an SC reduct. Let us get back to
Problem 2.13 in [6]. Item (iv) in Theorem 2.6.50 speaks rather of the class
S, CA . ,,, referred as the class of algebras having the neat embedding

property. For this reason, we need to review the notion of neat reducts.
The reader is refered to [1] for an overview. We concentrate on cylindric
algebras (for the time being). If € e CSB’ (i.e., € is a cylindric set algebra

of dimension B) with unit PU, then for any o < B, the elements of ¢
that are fixed by ¢;, i > a, can be thought of as representations of o ary

relations on U. In fact, if we keep only these elements and those

operations whose indices are all in «, then the resulting algebra is

obviously isomorphic to a Csa (and in fact to one with base U). This
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observation carries over to abstract CAg’s in general yielding the concept

of neat reducts. A reduct of an algebra 2l is another algebra 9B obtained
from 20 by dropping some of the operations. B thus has the same
universe of A but the operations defined on these elements are only
some of the original operations. In cylindric algebras, reducts are
important because certain reducts of cylindric algebras are cylindric
algebras (of a different dimension, though). Let A = (A, +, -~ ¢;, d;j)
e CAB and p: o — B be one to one. Then RoP2A = (A, +, -, -, Co(i)»
doi),p(j) i, j<o 18 @ CAg. Here a reduct is defined by renaming the

operations. When o ¢ § and p is the inclusion map, then 90,2 is just

the algebra obtained by discarding the operations indexed by ordinals in
B~oa For x €2, let Ax ={i € B:cjx # x}.Then for i, j < a we have

Adij ca and if Ax coaand i< a, then Ac;x < a. By noting that
Alx + y) < Ax U Ay and A(-x) = Ax, if we take the set Nr,® = {x € B :
Ax c o}, then this set is a subuniverse of R0,%. Then the algebra
N, B € CA, with universe Nr, B is called the neat a reduct of B. If
there is an embedding e : € — N, B, then we say that € neatly embeds
in 8. For K ¢ CAgand a < B, M, K = {Nr,B : B € K}. Now if a < B,

then 0 : p(“U) - p(PU) defined by
X {sebU:(s|a)e X}

maps p(“U) into Mr,o(PU). Thus set algebras can be neatly embedded
into algebras in arbitary extra dimensions. But the converse is strikingly
true. If A € CA, and there exists an embedding e : A — N, B, with
B e CA,,,, then 2 is representable. So, we have the following (neat)
Neat Embedding Theorem, cf. [7] Theorem 3.2.10, or NET for short, of
Henkin: RCA, = SNt,CA,,,, for any o. Here S stands for the
operation of forming subalgebras. Algebras in the class S9t,CA, ., are

said to have the Neat Embedding Property (NEP). Monk proved that
RCA, < S, CA, ., for every a > 2 and n € w, so that all w extra
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dimensions are needed to enforce representability, cf [7] Theorem 3.2.85.
The famous non-finite axiomatizability result for RCA, when a > 2,

follows from Monk’s result. Completely analogous observations carry over
to the other algebras dealt with in this paper. In particular, neat reducts
are defined completely analogously and we do have a Neat Embedding
Theorem for such algebras as well. In what follows, we formulate two
theorems that provide sufficient conditions for a class of algebras to have
the amalgamation property, and super amalgamation property,
respectively. Then we will use such theorems to solve Problem 2.13 in [6]
together with other related problems that are scattered in the literature.
We start by recalling the notion of the amalgamation property and super
amalgamation due to Maksimova [9]. The super amalgamation property
has been extensively studied in connection to interpolation and
definability in modal and intuitionistic logic by Maksimova, Gabbay [5]

and others. In this paper, we apply this notion rather to classical logic.
Definition 2. (1) Let V be a class of algebras (usually but not always
assumed to be a variety) and L;, Ly < V. Ly is said to have the
amalgamation property, or AP for short over L;, with respect to V, if for
all Ay € L; all A; and Ay € Ly, and all monomorphisms i; and iy of
2o into A, Ag, respectively, there exists A € V, a monomorphism m;
from 2(; into 2 and a monomorphism mg from 25 into A such that
my 01 = mg 0ly. In this case, we say that 2 is an amalgam of 2; and

2y over Ay via my and mg or even simply an amalgam.

(2) We say that Ly has the strong AP, or SAP for short over L; with
respect to V, if in addition to (1), we have my 04(4y) = my(A;) N my
(Ay). In this case, we say that 2 is a strong amalgam of 2; and 2,

over 2y, via m; and msg, or even simply a strong amalgam.

(3) Assume that Vis a class of boolean algebras with extra operations.
We say that Ly has SUPAPover L; with respect to V, if in addition to (1)

we have

(Vx e A;(Vy € Ag)(m;(x) < my(y) = (32 € Ag) (x < ij(2)Nig(2) < ¥)),
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where {j, k} = {1, 2}. Here < is the boolean order. In this case, we say
that 2 is a super amalgam of 2; and s over %,, via m; and mgy, or
even simply a super amalgam.

(4) When L; = Ly =L in (1) above, we say that L has AP with
respect to V. If furthermore L =V, we say that V simply has AP. A
similar observation holds for SAP and SUPAP.

Note that the more conventional definition of AP, SAP and SUPAP is
when L; = Ly = V. We note that SUPAP is stronger than SAP for

boolean algebras with extra operations, and for (varieties of) cylindric
algebras, it is strictly stronger, a result of Sagi and Shelah [14].

From now on we use the notation and terminology of [6] with obvious
modification for the other algebras. In particular, R05%B denotes the p

reduct of B [6], Definition 2.6.1, Mr,B denotes the a neat reduct of B
[6], Definition 2.6.28, and Stg L stands for the dimension restricted free
algebra over L with P generators, dimension restricted by p [6],

Definition 2.5.31. The sequence (n/ Cer L :n <p) L-freely generates
StﬁpL [6], Theorem 2.5.35. For X < %, 6g%X or simply GgX denotes

the subalgebra of 2l generated by X. 3gﬁX stands for the ideal

generated by X. In the following theorem condition (2) is just the
condition 2.6.50 (iii) in [6] extrapolated to other algebras considered
herein.

Theorem 3. Let L c K. Consider the following conditions:

(1) For all A € L for all non-zero x in A, for all finite I’ < a, there

exist distinct i, j € o \ I', such that sijx = 0.

(2) For all A € L for every finite sequence p without repeating terms
and with range included in «, for every non-zero x € A, there is a

function h and k < o such that h is an endomorphism of RoPU, k € a \
Rgp, ¢, oh = h and h(x) # 0.
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(3) (a) If whenever 2 € L, there exists x A such that if p=(Ax;

ti < |A]), D =

Ky and g =&/ CrhKp, then Gg™ 0 (g, 1 £ < |A|}

e L,

(b) If A € L, then for any B € K., such that A < N,B and A

generates B, and for any ideal of I of B, we have I < g™ (I N A),?

then in (1) and (2) L has AP with respect to RK over L, and in (3)
RK, has AP with respect to RK over L.

Proof. Note that algebras satisfying (2) are representable, cf. [6]
Theorem 2.6.50. It is not hard to show that (1) implies (2). Now assume

(2). Then the following condition holds for every A < w: for every k < w

for every one to one p € ko and every non-zero x € A, there exist o, A

k+A

such that o e o, ¢ 1s one to one, p < o, A is an endomorphism of

RORA, ¢5 0h = h, whenever, k <p <k+L and A(x) # 0. This can be
proved by induction on 2, cf. [6] p. 416. Let 2y and A; € L. We claim
that there exist B, B1 € Ky, i 1 Ao = N, By and j; : Ay — N, By
such that for every monomorphism f: 2y — 2; there exists a
monomorphism g : By — By such that goj, = j;of - We construct our
algebras using ultraproducts. Let R be the set of all ordered quadruples
(p, n, k, 1) such that: p € "o is one to one for some m € w, n € w, k, |

are one to one (finite) sequences with
k,l € "(a\ Rgp) and Rgk N Rgl = 0.
For p € 'o(i € w) one to one put

Xp,n:{(c,m,k,l}eR:pgcandnSm}.

1 This implies that the lattice of ideals of % is isomorphic to that of 9, via
I (INA).
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It is straightforward to check that the set consisting of all the Xon'sis
closed under finite intersections. Accordingly, we let M be the proper

filter of p(R) generated by the X, ,’s so that

M={YcR:X,, cY forsome p and n € wj}.

p,n

For each (p, n, k, I) € R, choose a bijection t((p, n, k, {)) from o +w onto
o such that

t(p, n, k, 1))} Rgp < Id,
and

t((p, n, k, ) (a + j) = kj, for each j < n.
Now fix i € {0, 1}. Let

F(2;) = Hmt(d’)mi / M.
oeR

Here D‘iot(q’)‘)li- the #(¢) reduct of ;- is a K ,,, and so F(2;)- an
ultraproduct of these - is also a K, ,,. Note too, that for each ¢ € R, the

algebra mt‘i’mi has universe A;. Consider a non-zero x € A; and

(p, n, k, l) € R. For each p < n for each [, and each k,, choose o such

p’

that o is one to one p < &, and h}lep to be in %DZQ[, such that Cs,0 h}lep
p p

= h}i’;, whenever, k, <p <k, +1, and h,i‘; (x) 0. Let j; be the

function from 2; into F(2;) defined to be 0 at 0 and for x = 0 by,

jx = (2o (A 1w (p, n, ky 1) € R)/ M.

Since, hl};(’o...ohlkn‘l1 is a boolean homomorphism from £2; into
e

Ro! (P 7. k. l>)9(, whenever, (p,n, k,[) e R, then j; is a Boolean
homomorphim from 2 into F(2;). Consider and n < a. Then for each

(p, n, k, I) € R such that n € Rgp, we have
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hkoo...hlk”‘1 0C X =C

k() kn—l
o " - T]ohloo...h X,

ln—l

since n ¢ Rgk U Rgl. From the fact that
{(p,n, k, 1) e R:m e Rgp}y e M,

we obtain that f preserves cylindrifications. Assume i, j € a. Then
k Fep .
f(dij) = <hlooo'“hln,1ldij :{p, n, k, I) € R},
but

{(p,n, k1) e R : hllzoo...hi’i‘lldij = dij} e M,

we obtain that f preserves diagonal elements. Preservation of

substitutions is similar. Now consider any p € (o + w) ~ a. Then for any

(ps n, k, ) € R such that u < o + n, we have

ko Fno1 _ 1 ko Fp_1
Ct<p,n,k,l>0hloo"'hln = 0...h"

n-1 o =77
This equality follows since (¢(p, n, k, I))u € Rgk ~ Rgl. But
{{pn,k,l)e R, p<a+n}e M,

we see that f(4;) < N, F(2;). Consider any x € A such that x = 0.

Then for any p e ‘o and any n < w, there exist sequences k, ! e”

(oo ~ Rgp) one to one such that Rgk N Rgl = 0 and

hkoo...hlk”‘lx = 0.

by n-1

This follows by a simple inductive argument. Then j; € Ism(2;,

Ne, F(2A;)). Let g be the function from F(2A) into F(2A; ) defined by:
g(xg: 0 e R)/ M) =(fxy:0eR)/ M.

Then it is not hard to check that g is well defined and it is the desired
“lifting” function. Now, we show that L has AP. Let €, 2, B € L. Let
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f:¢ > A and g : ¢ > B be monomorphisms. Then there exist A", B+,
¢" eK,,y, embeddings ey : %A > Ne, AT ep : B > Ne,B e : € >
Nt f:¢" 5> A" and g:¢" — B" such that foey = eq0f and
goep = egog. We can assume that GQWeA (A) = 2" and similarly for
B* and ¢*. (Here we are assuming that f[GgUeC(C)] c GQW(eA(A))
and that g[6e% ec(C)] < 6% (ep(B).) Let K ={A cK,,, : 2 =
GQm‘ﬂtQQl}. Then by [8] K has SUPAP, hence thereis a ®" in K and & :
At - D' and h: B" - D such that kof = hog. Then koey : %A —
N, D" and hoep : B — Ne,D" are one to one and koeyof = hoep

og. For (1) h}i can be taken to be s]lg.

Assume (3). Let B = o + w. We first prove the following condition
(*): For A, A' €L, B, B e Kg, ey, eq embeddings from 2, 2’ into
N, B, Ne, B, respectively, such that Sg=(ey(A))= and Sg¥ey ((A'))
=%, and i: 2 — A’ an isomorphism, there exists an isomorphism i :

B — B’ such that ioey = ey 0i. Let u = |A]. Let x be a bijection from

u onto A that satisfies the premise of (3)(a). Let y be a bijection from p
onto A’, such that i(x;)=y; for all j <p Let p= (A(Q[)xj tj<u),
D = Stép)KB, g = i/Cr&p)Kﬁ for all & <p and ¢ = Ggm%@{ga 2
< pu}. Then ¢ < 9, D, C generates D and by hypothesis ¢ € L. There
exist f € Hom(D, B) and f' e Hom(D, B') such that f(g:)=es(xz)
and f'(gz) = ea(yz) for all & < u. Note that fand f' are both onto. We
now have, e, 0i toezt o(f'1¢) = f1¢. Therefore, Ker f'( ¢ = Ker f N €.
Hence, by (3)(b) Jg(Ker f'N¢) = Jg(Ker f N ). So, Ker f' = Ker f. Let

y € B, then there exists x € D such that y = f(x). Define zA(y) = f'(x).
The map is well defined and is as required. Let € € L. let 2, B < RK,,.
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Let f:¢€ > 2 and g: ¢ — 9B be monomorphisms. Then by the Neat
Embedding Theorem, there exist A", 8%, ¢ e K,,,, and embeddings
eq A > MA e : B > MyB" and ep: € - N, €. We can
assume that ('SgQﬁeA(A) = A" and similarly for B* and ¢*. Let f(C)"

= ('SgQﬁeA(f(C)) and g(C)" = Gg%JreB(g(C)). Then by the above there
exist f:¢% > f(C)" and g:¢" - g(C)" such that (e4|f(C))of =
foec and (eg) g(C))og = goec. Now K as defined above has SUPAP,
hence thereisa D" inKand k: A" — ©* and A : 8" — D' such that
kof = hog. Then koey : % — N, ®" and hoeg : B — N, D" are one

toone and koeyqof = hoegog. [ ]

Consider the following condition:
(*) For all 2 € L, whenever, B € K, such that 2 < Nr,B, then
forall X c 2, 6g%X = ‘ﬁtOLGg%X.

Note that GQQ[X = Gth“%X . hence the above condition states that

forming subalgebras commutes with taking neat reducts. (More
succinctly: The subalgebra of the neat reduct is the same as the neat
reduct of the subalgebra).

Theorem 4. (1) If L satisfies (*) and [(1) or (2) in Theorem 3], then L
has SUPAP with respect to RK over L.

(2) If L satisfies (*) and (3) in Theorem 3, then RK, has SUPAP with
respect to RK, over L.

Proof. We only prove (2). The proof of (1) is completely analogous.
Assume (*) and (3). Repeating the above proof for AP, we have for € e
LA BeRK,f:C>Ag:C > B monomorphisms, there is a D €
N, Kyyw and m : A - ®n : B —» D such that mof = nog. Here m =

koey and n = hoep with k and A are as above. Denote k by m* and A
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by n*. Now we further want to show that if m(a) < n(b), for a € A and
b € B, then there exists ¢t € C such that a < f(t) and g(¢) < b. So, let a
and b be as indicated . We have m*oey(a) < n*oeg(b), so m*(ey(a))
< n"(eg(b)). Since L has SUPAP, there exist z € C* such that e4(a) <
f(z) and 2(z) < eg(®). Let T = Az\ o and 2’ = ¢(ryz- (Note that T is
finite.) So, we obtain that e4(¢rja) < f(C(F)z) and g(cryz) < ep(eryb).

It follows that e4(a) < f(z') and g(z') < eg(b). Now by hypothesis

2 e M, €F = 69%‘1¢+ (ec(C)) = ec(C).

So, there exists ¢ € C with z' = ep(t). Then we get e4(a) < f'(ec(t)) and
glec(t)) < eg(b). Tt follows that ey(a) < ey of(t) and egog(t) < eg(b).

Hence, a < f(¢) and g(t) < b. We are done. |

New Consequences of the Above Theorems

e The classes RK, does not satisfy (*), since these classes satisfy

3(a) in Theorem 3 but fails to have SAP [8]. The CA part answers a
question of Henkin and Monk posed in the introduction of [7] (p. iv item

(5)), since failure of (*) can be paraphrased as: There are generating
subreducts that are not neat reducts. Compare with Theorem 2.6.67 in
[6].

e The classes RK, for infinite o, do not satisfy (3)(b) in Theorem 3,
since these classes satisfy (3)(a) but fail to have AP. The CA part

confirms an unsettled conjecture of Tarski in [6] cf. op cit top of page 426.
That is Dc, cannot be replaced in Theorem 2.6.71 of [6] by RCA, for

infinite o.
e Let DKc, = {2 € K, : o ~ Ax is infinite for all x € A}. In [2], it
is shown that DKe, ’s and monadic generated K'’s satisfy (3) in Theorem

3 and (*). In particular, minimal algebras satisifies (3) and (*). It is not
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trivial to show that CA’s and QEA’s of positive characteristic £ > 0
satisfy (1) in Theorem 3 and (*), cf. [6] Theorem 2.6.54. It thus follows
from Theorem 3 that CA’s and QEA’s of positive characteristic £ > 0,
and monadic generated K,’s have SUPAP. (This answers questions of

Pigozzi for the CA case, cf. [12] p. 336, since SUPAP implies SAP.) It is
true that by the above the super amalgam is only representable, but if

A < B and A is of positive characteristic, then so is 9. For monadic
generated algebras one takes the subalgebra of the super amalgam gen-
erated by the images of the two algebras that lie over the base algebra.
This gives a super amalgam that is monadic generated.

o Let SsK, denote the class of semisimple algebras in K, ReK, be

the class of algebras satisfying (1) in Theorem 3 and L be the class of
algebras satisfying (2) in Theorem 3. Then DKec, < SsK, < ReK,

L < RK,. The first inclusion is easy. For the second inclusion for CA’s

cf. [6] Theorem 2.6.50. Generally, let 2 be semisimple. Let x be non zero
and T < a be finite. Then there is a maximal ideal I of 2 such that

x ¢ I, and so there is a finite subset A of o for which —C(A)x € I
Choose k,1 € a ~(I'UA). Assume that s,lex = 0. Then C(A)s]lex = s,lec(A)

x = 0. Hence - SéC(A)x =1. But then s,lg —c¢(a =1 so 1 el which is
impossible since I is a proper ideal. ReK, < L is proved in [6], and so is

the last inclusion. The latter follows from the Neat Embedding Theorem,
namely S, K, ,,, = RK,. Now the inclusions

SsK, < ReK, c L

are proper. To see this let 2 be the full set algebra in the space “2. Then
clearly 2% € ReK,. Also 2 is not semisimple. Indeed, let X = {(0:

k < a)}. Then X belongs to every maximal ideal of 2. For if X ¢ I, then
there is a finite subset I' of o such that ~ ¢r)X e I. Choose k e
o ~Tandlet ¢ =(0:pnea~{kl)U(k 1). Then ¢ e~ ¢)X, so {¢} € I.
But X < c;{¢}, so X € I which is impossible. Now ReK, — L. The
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following example is taken from [6] and adapted to the cases considered

herein. If we take 2 to be the full set algebra in the space “a, then

s,l{(ld| a) =0 for every k, [ < a. Suppose that p is a finite one to one

sequence with Rgpca and X < %o, X #0. Let ke a\ Rgp and

choose 1 € “a such that k& ¢ Rgp, T} Rgp < Id and 1 is one to one. Let
MY)={pe:doteY}.

Then it is not hard to show that h satisfies the conclusion of (2) in
Theorem 3.

o Now for the main result of this paper. Let o be an infinite ordinal.
The class L as defined in the second item of Theorem 3 does not coincide
with the class of representable algebras since it has AP with respect to
RK,, while RK fails to have AP. The fact that RCA, does not have

AP is proved by Pigozzi [12] and the same result holds for the other
algebras considered herein [3]. This answers a question of Henkin Monk
and Tarski [6] p.417, formulated as Problem 2.13 in [6]. The latter is one

of the very few remaining open questions in the monograph [6].
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