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Abstract 

Using the fact that the class of representable cylindric algebras of infinite 
dimension fails to have the amalgamation property, we solve an open problem in 
the monograph “Cylindric Algebras, Part I” by Henkin, Monk and Tarski. Our 
result applies to other algebras of logic, namely Pinter’s substitution algebras and 
Halmo’s quasi-polyadic algebras. 

1. Introduction 

Problem 2.13 on p. 464 of [6] asks whether every representable 
cylindric algebra of infinite dimension satisfies a certain property 
formulated in terms of reducts of the algebra in question which is (iii) in 
Theorem 2.6.50 in [6]. We give a negative answer to this question by 
showing that the class of algebras satisfying (iii) in Theorem 2.6.50 
necessarily have the amalgamation property, while it is known that the 
class of representable cylindric algebras does not have the amalgamation 
property. However, we will not only address cylindric algebras, but our 
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investigations will cover also other algebras for which this question is 
meaningful. The concrete versions of algebras considered consist of sets 
of sequences, and the operations are set-theoretic operations on such sets. 
Let α  be an ordinal. Let U be a set. Then, we define for α<ji,  and 

:UX α⊆  

{ ( ) ( ) },allfor,: ijjsjtXtUsXci ≠=∈∃∈= α  

{ [ ] },o: XjisUsXs j
i ∈∈= α  

[ ] { [ ] },,o:, XjisUsXs ji ∈∈= α  

{ }jiij ssUsd =∈= α :  

[ ]  is the replacement on α  that takes i to j and leaves every other 

thing fixed, while [ ]ji,  is the transposition interchanging i and j. The 
extra non-boolean operations we deal with are as specified above. For set 
X, let ( ) ( ) XXX ,0~,,,, /= IU℘B  be the full boolean set algebra with 

universe ( ).X℘  Let S be the operation of forming subalgebras, and P be 
that of forming products. 

Then 

{( ( ) ) }.setais:,, , UscUSP ji
j
ii α<

α
α = BRSC  

{( ( ) [ ] ) }.setais:,,, ,, UsscUSP jiji
j
ii α<

α
α = BRQA  

{( ( ) ) }.setais:,, , UdcUSP jiiji α<
α

α = BRCA  

{( ( ) [ ] ) }.setais:,,, ,, UsdcUSP jijiiji α<
α

α = BRQEA  

SC  stands for the class of Pinter’s substitution algebras. ( )QEAQA  for 
quasi-polyadic (equality) algebras and CA  stands for the class of 
cylindric algebras. In our treatment of cylindric algebras, we follow the 
notation and terminology of [6], while for QA ’s and QEA ’s we follow [13] 
and for SC ’s we follow [10], see also [11]. These are abstract classes 
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defined by a finite schema of equations in the same similarity type of the 
representable algebras defined above. 

Definition 1. An algebra in αSC  is of the form 

( ) ,,,1,0,,,, , α∈−⋅+= ji
j
ii scAA  

where ( )1,0,,,, −⋅+A  is a boolean algebra j
ii sc ,  are unary operations 

on ( )α<ji,A  satisfying the following equations for all α∈lkji ,,,  

1. ( ) ,,,00 ycxcycxcxcxc iiiiij ⋅=⋅≤=  and ,xccxcc ijji =  

2. ,xxsi
i =  

3. i
js  are boolean endomorphisms, 

4. ,xcxcs ii
i
j =  

5. ,xsxsc i
j

i
ji =  whenever ,ji ≠  

6. ,xscxcs i
jkk

i
j =  whenever { },, jik ∈/  

7. .xscxsc i
jj

j
ii =  

All algebras considered have an SC  reduct. Let us get back to 
Problem 2.13 in [6]. Item (iv) in Theorem 2.6.50 speaks rather of the class 

,wS +ααCANr  referred as the class of algebras having the neat embedding 
property. For this reason, we need to review the notion of neat reducts. 
The reader is refered to [1] for an overview. We concentrate on cylindric 
algebras (for the time being). If ,

β
∈ sCC  (i.e., C  is a cylindric set algebra 

of dimension β ) with unit ,Uβ  then for any ,β<α  the elements of C  
that are fixed by ,, α≥ici  can be thought of as representations of α  ary 
relations on U. In fact, if we keep only these elements and those 
operations whose indices are all in ,α  then the resulting algebra is 
obviously isomorphic to a 

αsC  (and in fact to one with base U). This 
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observation carries over to abstract βCA ’s in general yielding the concept 

of neat reducts. A reduct of an algebra A  is another algebra B  obtained 
from A  by dropping some of the operations. B  thus has the same 
universe of A  but the operations defined on these elements are only 
some of the original operations. In cylindric algebras, reducts are 
important because certain reducts of cylindric algebras are cylindric 
algebras (of a different dimension, though). Let ( )iji dcA ,,,,, −⋅+=A  

β∈ CA  and β→αρ :  be one to one. Then ( ( ),,,,, icA ρ
ρ −⋅+=ARd  

( ) ( ) ) α<ρρ jijid ,,  is a .αCA  Here a reduct is defined by renaming the 

operations. When β⊆α  and ρ  is the inclusion map, then ARdα  is just 
the algebra obtained by discarding the operations indexed by ordinals in 

.αβ ~  For ,A∈x  let { }.: xxcix i ≠β∈=∆ Then for α<ji,  we have 
α⊆∆ ijd  and if α⊆∆x and ,α<i  then .α⊆∆ xci  By noting that 

( ) yxyx ∆∆⊆+∆ U  and ( ) ,xx ∆=−∆  if we take the set { :BxNr ∈=αB  

},α⊆∆x  then this set is a subuniverse of B.Rdα  Then the algebra 

αα ∈ CABNr  with universe BαNr  is called the neat α  reduct of .B  If 
there is an embedding ,: BNrC α→e  then we say that C  neatly embeds 
in .B  For β⊆ CAK and { }., KK ∈=β<α αα B:BNrNr  Now if ,β<α  

then ( ) ( )UU βα →θ ℘℘:  defined by 

{ ( ) }XsUsX ∈α∈ β :a  

maps ( )Uα℘  into ( ).Uβα℘Nr  Thus set algebras can be neatly embedded 
into algebras in arbitary extra dimensions. But the converse is strikingly 
true. If α∈ CAA  and there exists an embedding ,: BNrA α→e  with 

,w+α∈ CAB  then A  is representable. So, we have the following (neat) 
Neat Embedding Theorem, cf. [7] Theorem 3.2.10, or NET for short, of 
Henkin: wS +ααα = CARCA Nr  for any .α  Here S stands for the 

operation of forming subalgebras. Algebras in the class wS +ααCANr  are 
said to have the Neat Embedding Property (NEP). Monk proved that 

nS +ααα ⊂ CARCA Nr  for every 2>α  and ,wn ∈  so that all w  extra 
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dimensions are needed to enforce representability, cf [7] Theorem 3.2.85. 
The famous non-finite axiomatizability result for αRCA  when ,2>α  
follows from Monk’s result. Completely analogous observations carry over 
to the other algebras dealt with in this paper. In particular, neat reducts 
are defined completely analogously and we do have a Neat Embedding 
Theorem for such algebras as well. In what follows, we formulate two 
theorems that provide sufficient conditions for a class of algebras to have 
the amalgamation property, and super amalgamation property, 
respectively. Then we will use such theorems to solve Problem 2.13 in [6] 
together with other related problems that are scattered in the literature. 
We start by recalling the notion of the amalgamation property and super 
amalgamation due to Maksimova [9]. The super amalgamation property 
has been extensively studied in connection to interpolation and 
definability in modal and intuitionistic logic by Maksimova, Gabbay [5] 
and others. In this paper, we apply this notion rather to classical logic. 

Definition 2. (1) Let V be a class of algebras (usually but not always 
assumed to be a variety) and 221 ., LVLL ⊆  is said to have the 
amalgamation property, or AP for short over ,1L  with respect to V, if for 

all 10 L∈A  all 1A  and ,22 L∈A  and all monomorphisms 1i  and 2i  of 

0A  into ,, 21 AA  respectively, there exists ,V∈A  a monomorphism 1m  
from 1A  into A  and a monomorphism 2m  from 2A  into A  such that 

.oo 2211 imim =  In this case, we say that A  is an amalgam of 1A  and 

2A  over 0A  via 1m  and 2m  or even simply an amalgam. 

(2) We say that 2L  has the strong AP, or SAP for short over 1L  with 

respect to V, if in addition to (1), we have ( ) ( ) 211011 o mAmAim I=  
( ).2A  In this case, we say that A  is a strong amalgam of 1A  and 2A  
over ,0A  via 1m  and ,2m  or even simply a strong amalgam. 

(3) Assume that V is a class of boolean algebras with extra operations. 
We say that 2L  has SUPAP over 1L  with respect to V, if in addition to (1) 
we have 

( )( ) ( ( ) ( ) ( ) ( ( ) ( ) )),0 yzizixAzymxmAyAx kjkjkj ≤≤∈∃⇒≤∈∀∈∀   
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where { } { }.2,1, =kj  Here ≤  is the boolean order. In this case, we say 
that A  is a super amalgam of 1A  and 2A  over ,0A  via 1m  and ,2m  or 
even simply a super amalgam. 

(4) When LLL == 21  in (1) above, we say that L has AP with 
respect to V. If furthermore ,VL =  we say that V simply has AP. A 
similar observation holds for SAP and SUPAP. 

Note that the more conventional definition of AP, SAP and SUPAP is 
when .21 VLL ==  We note that SUPAP is stronger than SAP for 
boolean algebras with extra operations, and for (varieties of) cylindric 
algebras, it is strictly stronger, a result of Sagi and Shelah [14]. 

From now on we use the notation and terminology of [6] with obvious 

modification for the other algebras. In particular, BRdρα  denotes the ρ  

reduct of B  [6], Definition 2.6.1, BNrα  denotes the α  neat reduct of B  

[6], Definition 2.6.28, and LρβFr  stands for the dimension restricted free 

algebra over L with β  generators, dimension restricted by ρ  [6], 

Definition 2.5.31. The sequence β<ηη ρ
β :LCr  L-freely generates 

LρβFr  [6], Theorem 2.5.35. For XX ASgA,⊆  or simply XSg  denotes 

the subalgebra of A  generated by XX AJg.  stands for the ideal 
generated by X. In the following theorem condition (2) is just the 
condition 2.6.50 (iii) in [6] extrapolated to other algebras considered 
herein. 

Theorem 3. Let .α⊆ KL  Consider the following conditions: 

(1) For all L∈A  for all non-zero x in A, for all finite ,α⊆Γ  there 

exist distinct ,\, Γα∈ji  such that .0≠xs j
i  

(2) For all L∈A  for every finite sequence ρ  without repeating terms 

and with range included in ,α  for every non-zero ,Ax ∈  there is a 

function h and α<k  such that h is an endomorphism of \, α∈ρ kARd  
hhcRg k =ρ o,  and ( ) .0≠xh  
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(3) (a) If whenever ,L∈A  there exists Ax A∈  such that if ix∆=ρ  

β
ρ=< KAAi FrD,:  and ,β

ρ
ξ ξ= KACrg  then { }Ag <ξξ

α :DRdSg  

,L∈   

(b) If ,L∈A  then for any w+α∈ KB  such that BNrA α⊆  and A 

generates ,B  and for any ideal of I of ,B  we have ( ),AII IBJg⊆ 1 

then in (1) and (2) L has AP with respect to αRK  over L, and in (3) 

αRK  has AP with respect to αRK  over L. 

Proof. Note that algebras satisfying (2) are representable, cf. [6] 
Theorem 2.6.50. It is not hard to show that (1) implies (2). Now assume 
(2). Then the following condition holds for every :w<λ  for every wk <  

for every one to one α∈ρ k  and every non-zero ,Ax ∈  there exist h,σ  

such that σα∈σ λ+ ,k  is one to one, h,σ⊆ρ  is an endomorphism of 

,o, hhc uk =σ
ρARd  whenever, λ+<µ≤ kk  and ( ) .0≠xh  This can be 

proved by induction on ,λ  cf. [6] p. 416. Let 0A  and .1 L∈A  We claim 
that there exist 00010 :, BNrABB α+α →∈ jwK  and 111 : BNrA α→j  
such that for every monomorphism 10: AA →f  there exists a 
monomorphism 10: BB →g  such that ⋅= fjjg oo 10  We construct our 
algebras using ultraproducts. Let R be the set of all ordered quadruples 

lkn ,,,ρ  such that: α∈ρ m  is one to one for some lkwnwm ,,, ∈∈  
are one to one (finite) sequences with 

( ) .0and\, /=ρα∈ RglRgkRglk n I  

For ( )wii ∈α∈ρ  one to one put 

{ }.and:,,,, mnRlkmX n ≤σ⊆ρ∈σ=ρ  

                                                      

1 This implies that the lattice of ideals of B  is isomorphic to that of  ,A  via 

( ) .AII Ia  
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It is straightforward to check that the set consisting of all the nX ,ρ ’s is 

closed under finite intersections. Accordingly, we let M be the proper 
filter of ( )R℘  generated by the nX ,ρ ’s so that 

{ YXRYM n ⊆⊆= ρ,:  for some ρ  and }.wn ∈  

For each ,,,, Rlkn ∈ρ  choose a bijection ( )lknt ,,,ρ  from w+α  onto 
α  such that 

( ) ,,,, IdRglknt ⊆ρρ   

and 

( ) ( ) ,,,, jkjalknt =+ρ  for each .nj <  

Now fix { }.1,0∈i  Let 

( ) ( ) .Mi
t

R
i ARdA φ

∈φ
∏=F  

Here ( ) -i
t ARd φ  the ( )φt  reduct of -iA  is a ,w+αK  and so ( )-iAF  an 

ultraproduct of these - is also a .w+αK  Note too, that for each ,R∈φ  the 

algebra i
t ARd φ  has universe .iA  Consider a non-zero iAx ∈  and 

.,,, Rlkn ∈ρ  For each np <  for each pl  and each ,pk  choose σ  such 

that σ  is one to one ,σ⊆ρ  and p
p

l
kh  to be in ,ARdρk  such that p

pu
l
khc oσ  

,p
p

l
kh=  whenever, ppp lkk +<µ≤  and ( ) .0≠xh p

p

l
k  Let ij  be the 

function from iA  into ( )iAF  defined to be 0 at 0 and for 0≠x  by, 

( ) ( ) .,,,:o 1
1

0
0

MRlknxhhxj in
n

i k
l

k
li ∈ρ= −

−

AA K  

Since, 1
1

0
0

oo −
−

n
n
k
l

k
l hh K  is a boolean homomorphism from iA  into 

( ) ,,,, ARd lknt ρ  whenever, ,,,, Rlkn ∈ρ  then ij  is a Boolean 
homomorphim from A  into ( ).iAF  Consider and .α<η  Then for each 

Rlkn ∈ρ ,,,  such that ,ρ∈η Rg  we have 
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,oocoo 1
1

0
0

1
1

0
0

xhhcxhh n
n

n
n

k
l

k
l

k
l

k
l

−
−

−
− ηη = KK  

since .RglRgk U∈/η  From the fact that 

{ } ,:,,, MRgRlkn ∈ρ∈η∈ρ  

we obtain that f preserves cylindrifications. Assume ., α∈ji  Then 

( ) },,,,:o 1
1

0
0

Rlkndhhdf ij
k
l

k
lij n

n
∈ρ= −

−
K  

but 

{ } ,o:,,, 1
1

0
0

MddhhRlkn ijij
k
l

k
l

n
n

∈=∈ρ −
−

K  

we obtain that f preserves diagonal elements. Preservation of 
substitutions is similar. Now consider any ( ) .~ α+α∈µ w  Then for any 

Rlkn ∈ρ ,,,  such that ,n+α<µ  we have 

.ooo 1
1

0
0

1
1

0
0,,, −

−
−
−

=ρ
n

n
n

n
k
l

k
l

k
l

k
llknt hhhhc KK  

This equality follows since ( ) .~,,, RglRgklknt ∈µρ  But 

{ } ,,,,, MnRlkn ∈+α<µ∈ρ  

we see that ( ) ( ).iiAf ANr Fα⊆  Consider any Ax ∈  such that .0≠x  

Then for any α∈ρ i  and any ,wn <  there exist sequences nlk ∈,  
( )ρα Rg~  one to one such that 0/=RglRgk I  and 

.0o 1
1

0
0

≠−
−

xhh n
n
k
l

k
l K  

This follows by a simple inductive argument. Then ( ,ii Ismj A∈  

( )).iANr Fα  Let g be the function from ( )0AF  into ( )1AF  defined by: 

( ) .:: MRfxMRxg ∈φ=∈φ φφ  

Then it is not hard to check that g is well defined and it is the desired 
“lifting” function. Now, we show that L has AP. Let .,, L∈BAC  Let 
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AC →:f  and BC →:g  be monomorphisms. Then there exist ,BA ++ ,  

,w+α
+ ∈ KC  embeddings →→→ +

α
+

α CBNrBANrA :,:,: CBA eee  
+++

α → ACCNr :, f  and ++ → BC:g  such that feef AA oo =  and 

.oo geeg BB =  We can assume that ( ) +=
+

ASgA AeA  and similarly for 

+B  and .+C  (Here we are assuming that [ ( )] ( ( ))AeCef AC
++

⊆ AC SgSg  

and that [ ( )] ( ( ) ).BeCeg BC
++

⊆ BC SgSg  Let { =∈= +α A:wAK K  

}.ANrSgA α  Then by [8] K has SUPAP, hence there is a +D  in K and :k  
++ → DA  and ++ → DB:h  such that .oo ghfk =  Then →A:o Aek  

+
αDNr  and +

α→ DNrB:o Beh  are one to one and BA ehfek ooo =  

.o g  For (1) l
kh  can be taken to be .l

ks  

Assume (3). Let .w+α=β  We first prove the following condition 

( ) :∗∗  For AA eeL ′β∈′∈′ ,,,,, KBBAA  embeddings from AA ′,  into 

,, BNrBNr ′αα  respectively, such that ( ( )) BSgB =AeA  and (( ))AeA ′′
′BSg  

,B′=  and AA ′→:i  an isomorphism, there exists an isomorphism :i  

BB ′→  such that .oo ieei AA ′=  Let .A=µ  Let x be a bijection from 
µ  onto A that satisfies the premise of (3)(a). Let y be a bijection from µ  

onto ,A′  such that ( ) jj yxi =  for all .µ<j  Let ( ) ,: µ<∆=ρ jx j
A  

( ) ( )
β

ρ
µξβ

ρ
µ ξ== KK Crg,FrD  for all µ<ξ  and { ξ= ξ

α :gDRdSgC  

}.µ<  Then ,DNrC α⊆  C generates D  and by hypothesis .L∈C  There 

exist ( )BD,Homf ∈  and ( )BD ′∈′ ,Homf  such that ( ) ( )ξξ = xegf A  

and ( ) ( )ξ′ξ =′ yegf A  for all .µ<ξ  Note that f and f ′  are both onto. We 

now have, ( ) C.C  ffeie AA =′−
′

− ooo 11  Therefore, C.C II fKerfKer =′  

Hence, by (3)(b) ( ) ( ).CIgCIg II fKerfKer =′  So, .fKerfKer =′  Let 

,By ∈  then there exists Dx ∈  such that ( ).xfy =  Define ( ) ( ).ˆ xfyi ′=  

The map is well defined and is as required. Let .L∈C  let ., α∈ RKBA  
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Let AC →:f  and BC →:g  be monomorphisms. Then by the Neat 

Embedding Theorem, there exist w+α
+++ ∈ K,,, CBA  and embeddings 

+
α

+
α →→ BNrBANrA :,: BA ee  and .: +

α→ CNrCCe  We can 

assume that ( ) +=
+

ASgA AeA  and similarly for +B  and .+C  Let ( )+Cf  

( )( )CfeA
+

= ASg  and ( ) ( )( ).CgeCg B
+

=+ BSg  Then by the above there 

exist ( )++ → Cff C:  and ( )++ → Cgg C:  such that ( ( )) =fCfeA o  

Cef o  and ( ( )) .oo CB eggCge =  Now K as defined above has SUPAP, 

hence there is a +D  in K and ++ → DA:k  and ++ → DB:h  such that 

.oo ghfk =  Then +
α→ DNrA:o Aek  and +

α→ DNrB:o Beh  are one 

to one and .oooo gehfek BA =                                                                   ■ 

Consider the following condition: 

( )∗  For all ,L∈A  whenever, w+α∈ KB  such that ,BNrA α⊆  then 

for all ., XXX BA SgNrSgA α=⊆  

Note that .XX BNrA SgSg α=  hence the above condition states that 
forming subalgebras commutes with taking neat reducts. (More 
succinctly: The subalgebra of the neat reduct is the same as the neat 
reduct of the subalgebra). 

Theorem 4. (1) If L satisfies ( )∗  and [(1) or (2) in Theorem 3], then L 

has SUPAP with respect to αRK  over L. 

(2) If L satisfies ( )∗  and (3) in Theorem 3, then αRK  has SUPAP with 

respect to αRK  over L. 

Proof. We only prove (2). The proof of (1) is completely analogous. 
Assume ( )∗  and (3). Repeating the above proof for AP, we have for ∈C  

BCACBA →→∈ α ::,, gfL RK  monomorphisms, there is a ∈D  

w+ααKNr  and DBDA →→ :: nm  such that .oo gnfm =  Here =m  

Aek o  and Behn o=  with k and h are as above. Denote k by +m  and h 
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by .+n  Now we further want to show that if ( ) ( ),bnam ≤  for Aa ∈  and 
,Bb ∈  then there exists Ct ∈  such that ( )tfa ≤  and ( ) .btg ≤  So, let a 

and b be as indicated . We have ( ) ( ),oo benaem BA
++ ≤  so ( ( ))aem A

+  

( ( )).ben B
+≤  Since L has SUPAP, there exist +∈ Cz  such that ( ) ≤aeA  

( )zf  and ( ) ( ).bezg B≤  Let α∆=Γ \z  and ( ) .zcz Γ=′  (Note that Γ  is 

finite.) So, we obtain that ( ( ) ) ( ( ) )zcfaceA ΓΓ ≤  and ( ( ) ) ( ( ) ).bcezcg B ΓΓ ≤  

It follows that ( ) ( )zfaeA ′≤  and ( ) ( ).bezg B≤′  Now by hypothesis 

( ( )) ( ).CeCez CC ==∈′
+

α+
α

CNrSgCNr  

So, there exists Ct ∈  with ( ).tez C=′  Then we get ( ) ( ( ))tefae CA ′≤  and 
( ( )) ( ).beteg BC ≤  It follows that ( ) ( )tfeae AA o≤  and ( ) ( ).o betge BB ≤  

Hence, ( )tfa ≤  and ( ) .btg ≤  We are done.                                               ■ 

New Consequences of the Above Theorems 

● The classes αRK  does not satisfy ( ),∗  since these classes satisfy 

3(a) in Theorem 3 but fails to have SAP [8]. The CA  part answers a 
question of Henkin and Monk posed in the introduction of [7] (p. iv item 
(5)), since failure of ( )∗  can be paraphrased as: There are generating 
subreducts that are not neat reducts. Compare with Theorem 2.6.67 in 
[6]. 

● The classes αRK  for infinite ,α  do not satisfy (3)(b) in Theorem 3, 

since these classes satisfy (3)(a) but fail to have AP. The CA  part 
confirms an unsettled conjecture of Tarski in [6] cf. op cit top of page 426. 
That is αDc  cannot be replaced in Theorem 2.6.71 of [6] by αRCA  for 
infinite .α  

● Let { x∆α∈= αα ~:KDKc A  is infinite for all }.Ax ∈  In [2], it 

is shown that αDKc ’s and monadic generated K ’s satisfy (3) in Theorem 
3 and ( ).∗  In particular, minimal algebras satisifies (3) and ( ).∗  It is not 
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trivial to show that CA ’s and QEA ’s of positive characteristic 0>k  
satisfy (1) in Theorem 3 and ( ),∗  cf. [6] Theorem 2.6.54. It thus follows 
from Theorem 3 that CA ’s and QEA ’s of positive characteristic ,0>k  
and monadic generated αK ’s have SUPAP. (This answers questions of 

Pigozzi for the CA  case, cf. [12] p. 336, since SUPAP implies SAP.) It is 
true that by the above the super amalgam is only representable, but if 

BA ⊆  and A  is of positive characteristic, then so is .B  For monadic 
generated algebras one takes the subalgebra of the super amalgam gen-
erated by the images of the two algebras that lie over the base algebra. 
This gives a super amalgam that is monadic generated. 

● Let αSsK  denote the class of semisimple algebras in αα ReKK ,  be 

the class of algebras satisfying (1) in Theorem 3 and L  be the class of 
algebras satisfying (2) in Theorem 3. Then ⊆⊆⊆ ααα ReKSsKDKc  

.α⊆ RKL  The first inclusion is easy. For the second inclusion for CA ’s 
cf. [6] Theorem 2.6.50. Generally, let A  be semisimple. Let x be non zero 
and α⊆Γ  be finite. Then there is a maximal ideal I of A  such that 

,Ix ∈/  and so there is a finite subset ∆  of α  for which ( ) .Ixc ∈− ∆  

Choose ( ).~, ∆Γα∈ Ulk  Assume that .0=xsl
k  Then ( ) ( )∆∆ = csxsc l

k
l
k  

.0=x  Hence ( ) .1=− ∆ xcsl
k  But then ( ) 1=− ∆ xcsl

k  so I∈1  which is 

impossible since I is a proper ideal. LReK ⊆α  is proved in [6], and so is 
the last inclusion. The latter follows from the Neat Embedding Theorem, 
namely .α+αα = RKK wSNr  Now the inclusions 

LReKSsK ⊆⊆ αα  

are proper. To see this let A  be the full set algebra in the space .2α  Then 
clearly .α∈ ReKA  Also A  is not semisimple. Indeed, let { :0=X  

}.α<k  Then X belongs to every maximal ideal of .A  For if ,IX ∈/  then 

there is a finite subset Γ  of α  such that ( ) .~ IXc ∈Γ  Choose ∈k  

Γα ~ and let { } .1,~:0 kk Uα∈µ=φ  Then ( ) ,~ Xc Γ∈φ  so { } .I∈φ  

But { },φ⊆ kcX  so IX ∈  which is impossible. Now .LReK ⊂α  The 
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following example is taken from [6] and adapted to the cases considered 

herein. If we take A  to be the full set algebra in the space ,αα  then 

( ) 0=αIdsl
k  for every ., α<lk  Suppose that ρ  is a finite one to one 

sequence with α⊆ρRg  and .0, ≠α⊆ α XX  Let ρα∈ Rgk \  and 

choose α∈τ α  such that IdRgRgk ⊆ρτρ∈/ ,  and τ  is one to one. Let 

( ) { }.o: YYh ∈τφα∈φ= α  

Then it is not hard to show that h satisfies the conclusion of (2) in 
Theorem 3. 

● Now for the main result of this paper. Let α  be an infinite ordinal. 
The class L  as defined in the second item of Theorem 3 does not coincide 
with the class of representable algebras since it has AP with respect to 

,αRK  while αRK  fails to have AP. The fact that αRCA  does not have 

AP is proved by Pigozzi [12] and the same result holds for the other 
algebras considered herein [3]. This answers a question of Henkin Monk 
and Tarski [6] p.417, formulated as Problem 2.13 in [6]. The latter is one 
of the very few remaining open questions in the monograph [6]. 
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